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One of the most popular excitation methods for modal testing of rotating machinery is known to be
the uncorrelated isotropic excitation, which requires two independent random sources with equal
power for generation of a pair of uncorrelated excitation signals. In this work, a new excitation
method, the modulated random excitation, is proposed such that a pair of random signals with equal
power for modal testing of anisotropic rotors can be e!ectively generated by modulating the random
signal from a single random source with two harmonic carriers of a frequency with 903 phase
di!erence. The real as well as complex approaches are taken to illustrate the e!ectiveness of the
modulation technique. Finally, digital data processing technique is discussed in relation to the
implementation of the modulation technique in the discrete time domain. ( 2000 Academic Press
1. INTRODUCTION

In general, a rotor-bearing system consists of rotor and stator parts, which may have some
degree of non-axisymmetric properties. According to the non-axisymmetric properties,
a rotor-bearing system may be classi"ed as follows [1}3]: isotropic (symmetric) rotor
system2both the rotor and the stator are axisymmetric; anisotropic rotor system2the
rotor is axisymmetric but the stator is not; asymmetric rotor system2the stator is
axisymmetric but the rotor is not; general rotor system2neither the rotor nor the stator is
axisymmetric. The accidental or intended presence of asymmetry and/or anisotropy
in a rotor system, if not too small, can signi"cantly alter its dynamic characteristics, such as
the unbalance response, critical speeds and stability, from the ideal isotropic (symmetric)
rotor. Thus, accurate identi"cation of such asymmetric and anisotropic properties becomes
essential in gaining an adequate physical understanding of the dynamic behaviors of
practical rotors.

The complex modal testing method, which has been recently developed for rotor systems,
utilizes the so-called directional frequency response functions (dFRFs) between complex
inputs and outputs for e!ective modal parameter identi"cation [1}8]. It gives not only the
directivity of the backward and forward modes but also completely separates those modes
in the frequency domain so that e!ective modal parameter identi"cation is possible. Two
kinds of co-ordinate system have been used to de"ne the dFRFs associated with general
0022-460X/00/270297#13 $35.00/0 ( 2000 Academic Press
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rotors [1, 2]: stationary and rotating co-ordinates which are commonly adopted for the
identi"cation of anisotropic and asymmetric rotor systems respectively. The dFRFs de"ned
in the stationary (rotating) co-ordinate system have been known to be e!ectively used as
a diagnosis tool for anisotropy (asymmetry) in a rotor [1, 2]. Thus, two independent
procedures for identi"cation of the asymmetry and the anisotropy of a general rotor are
needed for calculation of dFRFs based on two di!erent co-ordinate systems. On the other
hand, it has been proven [3] that the dFRFs de"ned in the stationary co-ordinate system
can also be used for identi"cation of the asymmetry in an asymmetric rotor system. It
should be noted that it is easier to deal with the dFRFs de"ned in the stationary co-ordinate
than in the rotating co-ordinate, since the excitations and responses are usually measured
with respect to the stationary co-ordinate system.

Because the complex modal testing method requires the use of dFRFs between
complex inputs and outputs, the excitation and measurement techniques are quite
di!erent from the conventional ones. For unbiased estimation of dFRFs associated
with anisotropic rotor systems, Lee et al. [5}7] proposed the bidirectional random
excitation technique, which requires the simultaneous (bidirectional) excitations in two
directions at right angle and perpendicular to the rotation axis. The widely used
bidirectional random excitation is known to be the uncorrelated isotropic random
excitation, requiring two independent uncorrelated random sources with equal power,
which may be a burden for precise data generation. As the system anisotropy becomes null,
i.e., for isotropic (symmetric) rotors, only a unidirectional excitation su$ces, with the
response measurements along the two perpendicular directions. For asymmetric rotors, Lee
and Joh [1, 2] proposed a similar bidirectional excitation technique, which converts the
measured input and output signals in the stationary co-ordinate system to those in
the rotating co-ordinate system. Later, based on stationary co-ordinate formulation, Lee
et al. [3] also developed a unidirectional random excitation technique to estimate the
dFRFs of asymmetric rotor systems using the modulated relationship between the two
complex input models.

The main objective of this work is to propose a new excitation method based
on modulation technique for complex modal testing of anisotropic rotor systems,
which requires only one stationary random source so that signal generation becomes
straightforward. From one stationary random source, two real random signals for
modal testing of rotors are obtained by modulating the single stationary random
signal with two sinusoidal carriers which have the same frequency but a phase di!erence
of 903. This work adds two new practical "ndings to the previous work. One shows that the
severe uncorrelatedness property of two excitation signals, required for unbiased estimation
of dFRFs of anisotropic rotors, can be easily released by use of the proposed modulation
technique. This fact contradicts with the common understanding of modal testing of
non-rotating structures, where modulated signals for multi-input excitation are not
recommended for use. Another is that the modulation technique naturally enhances the
practicality in modal testing of anisotropic rotors by requiring only a single random signal
source and yet producing statistically identical results. To investigate the e!ectiveness and
practicality of the proposed modulation technique, the real and complex approaches are
taken and the digital analysis is carried out.

2. DIRECTIONAL FREQUENCY RESPONSE FUNCTIONS

Using the stationary co-ordinate system, the N]1 complex response and input vectors,
p(t) and g(t), are de"ned by the real response vectors, y (t), and the real input vectors, f

y
(t)
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and f
z
(t) respectively, as [1}9]

p (t)"y (t)#jz (t), p6 (t)"y (t)!jz(t),

g(t)"f
y
(t)#jf

z
(t), g6 (t)"f

y
(t)!jf

z
(t). (1)

Here j means the imaginary number and the bar denotes the complex conjugate.
For anisotropic rotor systems where the rotor is axisymmetric but the stator is not, the

directional frequency response matrices (dFRMs) between complex inputs and outputs are
de"ned as [1, 2, 4}7]

P (u)"[H
gp

(u) HgL p
(u)] C

G(u)

G< (u)D , (2)

where P (u), G (u) and G< (u) are the Fourier transforms of p (t), g (t) and g6 (t) respectively.
Here H

gp
(u) is referred to as the normal dFRM whereas HgL p(u), is referred to as the reverse

dFRM of anisotropic rotor, [1, 2, 4}7]. The reverse dFRM, HgL p (u), represents the degree of
anisotropy in an anisotropic rotor [1, 2].

3. ESTIMATION OF dFRFs

The key feature of the complex modal testing of an anisotropic rotor system is the
estimation of dFRFs using the two complex input and single complex output model in
equation (2) [1, 2, 5, 6]. Unless the directional coherence function (dCOH), c2ggL (u), between
g(t) and gN (t), is unity, the estimates of dFRFs, H

gp
(u) and HgL p (u), of anisotropic rotor

become [1, 2, 5, 6]

H
gp

(u)"
S
gp

(u)

S
gg

(u)

1!
SgL p (u)SggL (u)

S
gp

(u)SgL gL (u)

1!c2ggL (u)
,

HgL p (u)"
SgL p(u)

SgL gL (u)

1!
Sgp (u)SgL g (u)

SgL p (u)Sgg (u)

1!c2ggL (u)
, (3)

where

c2ggL (u)"
DSggL (u) D2

S
gg

(u)SgL gL (u)
. (4)

Here, S
ik
(u), i"g, gL and k"p, g, gL , are the two-sided directional auto- (for i"k) and cross-

(for iOk) spectral density functions (dPSDs and dCSDs) between the complex time signals,
i(t) and k (t). In the ideal case of uncorrelated complex input signals, g(t) and gN (t), that is,
c2ggL (u)"0, equation (3) reduces to [1, 2, 5, 6]

H
gp

(u)"
S
gp

(u)

S
gg

(u)
,

HgL p(u)"
SgL p (u)

SgL gL (u)
. (5)
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4. EXCITATION METHODS FOR COMPLEX MODAL TESTING

For unbiased estimation of dFRFs associated with anisotropic rotor systems, the bidirec-
tional random excitation method has been widely used, which essentially utilizes a complex
random input signal, g (t), and its conjugate random input signal, gN (t), satisfying the relation
given by [1, 2, 5, 6]

RggN (q)"RgN g (q)"0,

or equivalently, since RggN (q)"R
fyfy

(q)!R
fzfz

(q)!jMR
fyfz

(q)#R
fzfy

(q)N,

R
fyfy

(q)"R
fzfz

(q), R
fyfz

(q)"!R
fzfy

(q), (6)

where the correlation functions are de"ned by

R
ik
(q)"E[iN (t)k (t#q)]" lim

T?=

1

¹ P
T

0

iN (t)k (t#q) dt, i, k"g, gN , or f
y
, f

z
.

The relation (6) can be re-expressed, in the frequency domain, as

SggL (u)"SgL g (u)"0,

or

S
fyfy

(u)"S
fzfz

(u) and Re MS
fyfz

(u)N"0, (7)

where the spectral density functions are de"ned by

S
ik
(u)"P

=

~=

R
ik
(q) e~+uq dq, i, k"g, gL , or f

y
, f

z
.

The excitation methods satisfying condition (7) may be classi"ed according to property of
the imaginary part of S

fyfz
(u): one method with ImMS

fyfz
(u)N"0 and another with

ImMS
fyfz

(u)NO0. Two practical excitation methods have already been suggested to esti-
mate the dFRFs: for one method with ImMS

fyfz
(u)NO0, the directional (or bidirectional

rotating) random excitation is suggested, which satis"es S
fyfz

(u)"!jS
fyfy

(u) or
S
fyfz

(u)"jS
fyfy

(u); for another method with ImMS
fyfz

(u)N"0, the uncorrelated isotropic (or
bidirectional stationary) random excitation is suggested [1}3, 5, 6].

In case of directional random excitation, the condition (7) with ImMS
fyfy

(u)NO0, that is,
S
fyfz

(u)"jS
fyfy

(u) or S
fyfz

(u)"!jS
fyfy

(u), imposed on generation of directional random
excitation signals may be too severe to be easily realized in practice [6, 7]. Another critical
drawback of this method is that the estimation of the normal and reverse dFRFs, H

gp
(u)

and HgL p(u), requires two subsequent modal testings, one with the forward rotating excita-
tion and the other with backward rotating excitation [6, 7]. Because of the drawbacks of
directional random excitation, the uncorrelated isotropic random excitation has been
widely used in practice [1, 5, 6, 9].

In this work, a new random excitation method based on modulation technique is
proposed such that a pair of modulated random excitation signals with equal power
satisfying condition (7) with ImMS

fyfz
(u)NO0 can be generated e!ectively by using a station-

ary random signal from a single random source, whereas the widely used uncorrelated
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isotropic random excitation requires two independent uncorrelated random sources with
equal power. The new technique will be referred to as the modulated random excitation.

4.1. MODULATED RANDOM EXCITATION

The correlation and spectral relations between a complex input signal and its modulated
signal with the rotational frequency for modal testing of asymmetric rotors have been well
discussed in [3]. In this section, the relationships are extended to the complex input signals,
which are modulated with an arbitrary carrier frequency for modal testing of anisotropic
rotors. Now, consider the stationary real random process, M f (t)N, and the corresponding
amplitude modulated complex process, Mg(t)N, with a carrier frequency of u

0
, such that

g(t)"f (t)e+u0t"f (t) cos u
0
t#j f (t) sin u

0
t"f

y
(t)#j f

z
(t). (8)

Now it will be proved that a pair of complex input processes, Mg (t)N and MgN (t)N, become
individually stationary but jointly non-stationary. First, consider the double time cross-
correlation function, RggN (t1

, t
2
), which is derived as [10]

RggN (q, t)"RggN (t1
, t

2
)"E[gN (t

1
)gN (t

2
)]

"R
ff

(t
2
!t

1
) e~+u0(t1`t2)"R

ff
(q)e~+2u0t , (9)

where a di!erent correlation structure is de"ned by the transformation given by
t
1
"t!q/2, t

2
"t#q/2 and R is used in place of R to distinguish planes (q, t) from planes

(t
1
, t

2
). Here R

ff
(q) is the auto-correlation function of f (t). Because the cross-correlation

function, RggN (t1
, t

2
), is dependent on the absolute time t as shown in equation (9), the

complex input processes, Mg(t)N and MgN (t)N, remain jointly non-stationary unless the carrier
frequency, u

0
, is zero. The double-frequency dCSD, SggL (u1

, u
2
), can be derived from the

double-time cross-correlation function, RggN (t1
, t

2
), as [3, 9]

SggL (u, s )"SggL (u1
, u

2
)"2nS

ff A
u

1
#u

2
2 B d

1
(u

2
!u

1
#2u

0
), (10)

with the relationship

S
ik
(u

1
, u

2
)"S

ik
(u, s)"PPRik

(q, t)e~j(uq`st) dq dt, i, k"g, gL , (11)

where a di!erent spectral structure is de"ned by the transformation given by u
1
"u!s/2,

u
2
"u#s/2 and S is used in place of S to distinguish plane (u, s) from plane (u

1
, u

2
).

Here S
ff

(u) is the PSD of f (t) and d
1
(u) is the "nite delta function de"ned by

d
1
(u)"G

¹

2n
, A!

n
¹B(u(A

n
¹B,

0, otherwise.
(12)
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Since the dFRFs are estimated on the line u
1
"u

2
"u in the (u

1
, u

2
) plane, condition (7)

can be satis"ed for a su$ciently long record length ¹'n/u
0

as, from equation (10),

SggL (u, u)"¹SggL (u)"0, or equivalently, SgL g(u, u)"¹SgL g (u)"0. (13)

It means that a single random source incorporated with the modulation technique is
su$cient to generate a pair of real input signals satisfying the condition (7) required for
modal testing of anisotropic rotors.

Similarly, the double-time auto-correlation functions, R
gg

(t
1
, t

2
) and RgN gN (t1

, t
2
), and the

double-frequency dPSDs, S
gg

(u
1
, u

2
) and SgL gL (u1

, u
2
), for u

1
"u

2
"u, can be derived as

R
gg

(t
1
, t

2
)"E[gN (t

1
)g(t

2
)]"R

ff
(t
2
!t

1
)e+u0(t2~t1)"R

ff
(q)e+u0q,

RgN gN (t1
, t

2
)"E[g (t

1
)gN (t

2
)]"R

ff
(t
2
!t

1
)e~+u0(t2~t1)"R

ff
(q)e~+u0q,

S
gg

(u, u)"¹S
gg

(u)"¹S
ff

(u!u
0
),

SgL gL (u, u)"¹SgL gL (u)"¹S
ff

(u#u
0
). (14)

It implies that the dPSDs, S
gg

(u) and SgL gL (u), can be obtained from the dPSD of f (t), S
ff

(u),
simply by a frequency shift of u

0
. In practice, this frequency shift may cause an aliasing

problem unless an anti-aliasing "lter is properly used, or a su$ciently higher sampling
frequency than normally required may be needed in the process of data acquisition. In
addition, due to the frequency shift, the carrier frequency, u

0
, may have to be carefully

selected in consideration of the excitation frequency bandwidth, which will be further
discussed later. Note that the relations (14) con"rm that the complex input processes, Mg (t)N
and MgN (t)N, are individually stationary, although they are not jointly stationary as discussed
before.

4.2. REALIZATION OF MODULATION TECHNIQUE

For better understanding of physical realization of the condition (7) using a single
stationary random source, real formulation of the proposed modulation technique is
examined. A similar problem has been discussed in communication application [11, 12], for
a complex modulated signal, [ f (t)#jh(t)]e+u0t"f

y
(t)#j f

z
(t), where h (t) is also real. It is

concluded in [11, 12] that, for the modulated random processes, M f
y
(t)N and M f

z
(t)N, to be

wide-sense stationary (WSS) satisfying the condition (7), S
fyfy

(u)"S
fzfz

(u) and
S
fyfz

(u)"!S
fzfy

(u), the original random processes, M f (t)N and Mh(t)N, should be
wide-sense stationary with zero mean, satisfying S

ff
(u)"S

hh
(u) and S

fh
(u)"!S

hf
(u). On

the other hand, the proposed modulation technique deals with a single random source, that
is h (t)"0, and thus the processes, M f

y
(t)N and M f

z
(t)N, are not WSS. The modulated

excitation signals in equation (8) can be re-written in the real domain as

f
y
(t)"f (t) cos u

0
t"

f (t)

2
Me+u0t#e~+u0tN, f

z
(t)"f (t) sin u

0
t"

f (t)

2j
Me+u0t!e~+u0tN . (15)
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Thus, the double time auto-correlation function, R
fyfy

(q, t), and the double frequency
dPSD, S

fyfy
(u, s), can be expressed as

R
fyfy

(t
1
, t

2
)"R

fyfy
(q, t)"E[ fN

y
(t
1
) f

y
(t
2
)]"

1

4
R

ff
(q)Me+2u0t#e~+2u0t#e+u0q#e~+u0qN,

(16)

and

S
fyfy

(u, s )"
n
2

d
1
(s!2u

0
)S

ff
(u)#

n
2

d
1
(s#2u

0
)S

ff
(u)

#

n
2

d
1
(s)[S

ff
(u!u

0
)#S

ff
(u#u

0
)]. (17)

Because only the frequency line u
1
"u

2
"u or s"0 in plane ( ju

1
, ju

2
) is used for

estimation of dFRFs, equation (17) becomes, for a su$ciently long record length ¹'n/u
0
.

S
fyfy

(u, 0)"S
fyfy

(u, u)"¹S
fyfy

(u)"
¹

4
S
ff

(u!u
0
)#

¹

4
S
ff

(u#u
0
), (18)

Similarly, we can easily derive the relations

R
fzfz

(q, t)"
1

4
R

ff
(q)M!e+2u0t!e~+2u0t#e+u0q#e~+u0qN,

S
fzfz

(u, 0)"S
fzfz

(u, u)"¹S
fzfz

(u)"
¹

4
S
ff

(u!u
0
)#

¹

4
S
ff

(u#u
0
),

(19)

R
fyfz

(q, t)"!

j

4
R

ff
(q) Me+2u0t!e~+2u0t#e+u0q!e~+u0qN,

S
fyfz

(u, 0)"S
fyfz

(u, u)"¹S
fyfz

(u)"!j
¹

4
S
ff

(u!u
0
)

#j
¹

4
S
ff

(u#u
0
), (20)

R
fzfy

(q, t)"!

j

4
R

ff
(q) Me+2u0t!e~+2u0t!e+u0q#e~+u0qN,

S
fzfy

(u, 0)"S
fzfy

(u, u)"¹S
fzfy

(u)"j
¹

4
S
ff

(u!u
0
)!j

¹

4
S
ff

(u#u
0
) .

(21)
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Note that, from equations (18)}(21),

S
fyfy

(u)"S
fzfz

(u), S
fyfz

(u)"!S
fzfy

(u),

and

S
fyfz

(u)"0 for S
ff

(u!u
0
)"S

ff
(u#u

0
) (22)

holds. The ideal white noise case with S
ff

(u!u
0
)"S

ff
(u#u

0
), rarely occurs in practice.

This means that the uncorrelatedness property of two excitation signals, that is,
S
fyfz

(u)"0, required for unbiased estimation of dFRFs of anisotropic rotors [5, 6] can be
easily released. In that sense, the modulated complex random excitation is di!erent from the
previous uncorrelated isotropic random excitation. It can be concluded here that a single
stationary real random source, utilizing the proposed modulation technique, is su$cient to
provide a pair of random signals satisfying the condition (7) for modal testing of anisotropic
rotors. The proposed modulation technique is better than the uncorrelated isotropic
random excitation and far superior to the directional random excitation int terms of
practicality.

4.3. DIGITAL IMPLEMENTATION

For digital implementation of the proposed modulation technique, we need to discuss the
"nite discrete Fourier transform (DFT) de"ned as [10]

I(u
k
)"Dt

N~1
+
n/0

i (nDt) e(~+2nkn@N), for i"g, gN , p, (23)

with

u
k
"

2nk

¹

"

2nk

NDt
"kDu, k"!

N

2
#1, !

N

2
#2,2,

N

2
!1,

N

2
, (24)

where Dt is the sampling interval, N is the even number of samples, Du is the frequency
resolution and I (u) is the "nite discrete Fourier transform of i(t). Then the DFT of the
modulated complex signal, g (t)"f (t)e+u0t, can be written as

G(u
k
)"Dt

N~1
+
n/0

g (nDt)e~+uknDt"Dt
N~1
+
n/0

f (nDt)e~+(uk~u0)nDt

"Dt
N~1
+
n/0

f (nDt)e~+2n(k~l )n@N"F(u
k~l )

k"!

N

2
#1, !

N

2
#1,2,

N

2
!1,

N

2
, (25)

where u
0
"lDu is the carrier frequency. Here, for simplicity, l is assumed to be an integer

satisfying l(N/2 and F(u) is the Fourier transform of f (t). Similarly, the discrete Fourier
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transform of gN (t)"f (t)e~+u0t can be obtained as

GK (u
k
)"Dt

N~1
+
n/0

gN (nDt)e~+uknDt"Dt
N~1
+
n/0

f (nDt)e~+(uk`u0)nDt

"Dt
N~1
+
n/0

f (nDt)e~+2n(k`l)n@N"F (u
k`l),

k"!

N

2
#1, !

N

2
#2,2,

N

2
!1,

N

2
. (26)

Now, assume that f (t) behaves similar to a band-limited white noise over the frequency
resolution bandwidth Du"2n/¹. It then follows that for any two discrete frequencies,
u

1
"k

1
Du and u

2
"k

2
Du for k

1
, k

2
"!N/2#1, !N/2#2,2N/2!1, N/2, expected

value operations on FM (u
1
) and F (u

2
) will give [10]

1

¹

E[FM (u
1
)F(u

2
)]"G

0

S
ff

(u
1
)O0

for k
1
Ok

2
,

for k
1
"k

2
.

(27)

It means that the "nite Fourier transform of f (t), F (u), has uncorrelated frequency structure
in neighboring frequencies, say, u

1
and u

2
, as long as the frequencies, u

1
and u

2
, are apart

from each other at least by the resolution bandwidth Du. From equations (25)}(27), it
follows that

SggL (uk
)"

1

¹

E[GM (u
k
)GK (u

k
)]"

1

¹

E[FM Mu
(k~l )

NFMu
(k`l )

N]"0, for lO0. (28)

The condition for equation (13), that is, ¹'n/u
0
, can now be re-interpreted from

equations (27) and (28) as

Du
0
D'

Du
2

or Dl D'0.5. (29)

Note here that l is not necessarily an integer in practice. The above relation holds true when
there is no spectral leakage problem. In practice, the leakage problem occurs in analysis of
truncated data which is not periodic of period ¹. This e!ect can be analyzed by treating the
time domain truncation as weighting the original data by a rectangular weighting function
[10]. Among others, Hanning window function is commonly used to suppress the leakage,
particularly for random data. For example, the sampled time record i

w
(t) can be considered

to be the product of two functions as

i
w
(t)"u

h
(t)i(t), i"f, g, gL , p, (30)

where i (t) is the unlimited time history and u
h
(t) is the Hanning window function. It follows

that the Fourier transform of i
w
(t) is the convolution of the Fourier transforms of u

h
(t) and

i(t), i.e.,

I
w
(u)"P

=

~=

;
h
(a)I(u!a) da. (31)
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Here ;
h
(u) is the Fourier transform of u

h
(t) which is given by [10]

;
h
(u)"

1

2
;

r
(u)!

1

4
;

r Au!

2n
¹ B!

1

4
;

r Au#

2n
¹ B , (32)

where

;
r
(u)"¹ A

sin(u/2)¹

(u/2)¹ B e~+(u@2)T

is the Fourier transform of the rectangular window function. Although Hanning window,
;

h
(u), has a broader main lobe, it has side lobes in frequency domain of lower amplitude

than those of rectangular window function,;
r
(u), implying that Hanning window produces

less leakage [10]. The broader main lobe in Hanning window a!ects the neighboring
discrete frequencies, u

1
and u

2
, which are apart from each other by the resolution

bandwidth, Du, resulting in some correlation whereas its e!ects to distant discrete
frequencies are decreased signi"cantly [10]. Therefore, in practice, considering the relation
(28) and the window e!ect in equation (32), the carrier frequency, u

0
, should be designed

su$ciently higher than the resolution bandwidth of Du.
Now, suppose that the discrete Fourier transform of f (t), F(u

k
), exists only within the

Nyquist frequency, that is,

F(u) G
O0,

"0,

u
~N@2`1

)u)u
N@2

otherwise.

Then the frequency bandwidth of the modulated signal, g (t)"f (t)e+lDut, l being a positive
integer, will be shifted to u

~N@2`l`1
)u

k
)u

N@2`l . It means that the discrete Fourier
transform G(u

k
) of the modulated signal, g (t), does not exist over u

~N@2`1
)u

k
)u

~N@2`l ,
and, in turn, it exists over the region u

N@2`1
)u

k
)u

N@2`l beyond the positive Nyquist
frequency, violating the sampling theorem and being folded into u

~N@2`1
)u

k
)u

~N@2`l
.

Thus, it can be concluded that the e!ective frequency range for estimation of normal dFRFs
based on the modulation technique becomes u

~N@2`l`1
)u

k
)u

N@2
for a positive integer l.

Similarly, the e!ective frequency range for estimation of reverse dFRFs can be derived from
the modulated signal, gN (t)"f (t)e~+lDut, as u

~N@2`1
)u

k
)u

N@2~l .
Note that there is trade-o! between the condition (28) considering window e!ect in

equation (32) and the e!ective frequency range for estimation of dFRFs. A rule of thumb is
that the carrier frequency is recommended to be about three times the frequency resolution,
i.e., u

0
+3Du for the number of data N'100.

5. NUMERICAL EXAMPLE

In this section, in order to demonstrate the e!ectiveness of the proposed modulated
random excitation method in estimation of dFRFs for anisotropic rotors, numerical
simulations are performed and compared with the widely used uncorrelated isotropic
random excitation method.

To simulate the modulated random excitation, input force data, g (t)"f
y
(t)#j f

z
(t), were

numerically calculated from a stationary random signal, f (t), using the relations
f
y
(t)"f (t) cos u

0
t and f

z
(t)"f (t) sinu

0
t, where the carrier frequency is u

0
"lDu. The real



Figure 1. Coherence function of complex input signals, c2ggL (u), with n
d

(number of averaging)"20:
g(t)"f (t)e+lDut with (a) l"0.01, (b) 0.5, (c) 3.0, (d) 100.
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random signal, f (t), was generated from a Gaussian random process with time interval of
2.5 ms, and then modulated with a carrier frequency for l"0.01, 0.5, 3.0 and 100. Figure 1
compares the coherence functions, c2ggL (u), which were calculated with 20 ensemble aver-
agings (n

d
) of the 2048 point of FFT using Hanning window. The results indicate that l*3

su$ces to nearly meet the requirement c2ggL (u)"0 for the e!ective generation of excitation
signal for modal testing of rotors. It was shown in reference [13] that the coherence
functions, c2ggL (u), which were calculated by the two di!erent methods, that is, modulated
random excitation with a carrier frequency of u

0
"3Du and isotropic random excitation,

equally tend to vanish as n
d
(the number of averagings) increases. It con"rms that the two

methods can be equally and e!ectively used for excitation of anisotropic rotors.
Even though the above two methods show a similar behavior in satisfying the condition

(7), it normally holds ImMS
fyfz

(u)NO0 for the modulated random excitation technique
unlike the uncorrelated isotropic random excitation [13].

As an illustrate example, we treat a simple rotor whose equation of motion, using
a complex displacement, p (t), and a complex input, g(t), is given by [8]

mpK (t)#(c!jX
p
)pR (t)#kp(t)#DkpN (t)"g(t), (33)

where m, c and X
p
indicate the mass, damping and gyroscopic e!ect respectively, and k and

Dk correspond to the mean and deviatoric sti!nesses, the latter indicating the degree of
anisotropy. The normal and reverse dFRFs associated with equation (33) can be expressed
theoretically, by introducing the conjugate form of equation (33), as [2]

H
gp

(u)"
!mu2#jcu!X

p
u#k

(!mu2#jcu#X
p
u#k) (!mu2#jcu!X

p
u#k)!Dk2

,

HgL p(u)"
Dk

(!mu2#jcu#X
p
u#k)(!mu2#jcu!X

p
u#k)!Dk2

. (34)



Figure 2. Magnitude plot of estimated dFRFs: (a) H
gp

(u), (b) HgL p (u), with u
0
"3Du: u

0
"3.7 rad/s (0.59 Hz).

-----, Theoretical, **, estimated.
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In the simulations, the following numerical values have been used: m"4 kg, c"50 N s/m,
k"2]105N/m, Dk"!2]104 N/m, and X

p
"300 Ns/m.

To estimate dFRFs using the modulation technique, the real random signal, f (t), was
generated from a Gaussian random process with the time interval of 2.5 ms and digitally
band-pass-"ltered with the "lter frequency of 100 Hz. The modulated input force,
g(t)"f

y
(t)#j f

z
(t), was numerically calculated from a "ltered random signal, f (t), with the

carrier frequency of u
0
"3.7 rad/s (0.59 Hz, 3Du). The equation of motion was numerically

integrated with the time interval of 2.5 ms using the Runge}Kutta integration method to
compute the complex response, p (t)"y (t)#jz(t) of the simple rotor. Then, the dFRFs are
obtained by downward decimating the input and response data such that Nyquist fre-
quency is reduced to 100 Hz. The dFRFs were estimated with 100 ensemble averagings of
the 2048 point FFT using Hanning window. Gaussian-distributed random measurement
noises were also added to response signals so that the rms ratio of noise to signal was kept
to be 0.01. Figure 2 shows the magnitude plots of dFRFs obtained by modulated excitation
technique. Note the theoretical and estimated dFRFs are in good agreement, which shows
that modulated signals for modal testing of anisotropic rotors are e!ective. Here, the
violation of sampling theorem due to modulation is negligible because only three discrete
spectral lines (l"3) out of 2048 are shifted beyond Nyquist frequency [13].

6. CONCLUSIONS

A new e$cient excitation technique for modal testing of anisotropic rotors, the
modulated random excitation, is proposed. It features that, two real random signals used
for excitation devices can be obtained from a single stationary random source using
modulation technique. It is shown that the proposed method di!ers from the widely used
uncorrelated isotropic random excitation in that the two directional random excitation
signals may be correlated with each other. Finally, it is recommended as a rule of thumb
that the carrier frequency of about 3 times the frequency resolution is optimal, maximizing
the e!ective frequency range for dFRF estimates and the modulation e!ect.
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